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    Abstract—We show how concepts from game theory can be 
used to find and evaluate strategies for defending an electric 
power system against antagonistic attacks. Consequently, the 
interaction between the antagonist and the defender of the system 
is envisaged as a game. In a numerical example, we study the per-
formance of different defense strategies against a number of at-
tack scenarios. Particularly, we study whether there is a domi-
nant defense strategy, and an optimal allocation of resources be-
tween protection of components, and recovery. 

 
Index Terms—Homeland security, blackout, game theory. 

I.  INTRODUCTION 

LECTRIC power systems, from the beginning superimposed 
on the civilization, are today an indispensable part of the 

fabric of a modern society. Consequently, these systems make 
attractive targets to terrorists with a broad range of motives. 
Major power outages in the last decade clearly show that natu-
ral disasters, human factors, and technical failures, also need 
consideration. Here, we will, however, emphasize the national 
security (“Homeland security” in the U.S.) aspects of critical 
infrastructure protection, a topic that has received extensive 
interest lately (see e.g. [1]). Thus, we will consider physical 
antagonistic attacks against electric power grids (i.e. we will 
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not include “cyber attacks”). 
During war and armed conflicts (e.g. in Iraq, and former 

Yugoslavia), military, or semi-military, attacks against power 
grids have resulted in major power outages. To the authors’ 
knowledge, no major power outage in the Western world has 
originated from an antagonistic attack. For example, empirical 
data from the Swedish national transmission grid (1993–2003), 
and the Stockholm distribution grid (1998–2003), display a 
few recorded minor power outages caused by sabotage [2]. 
Further, there are few publicly reported sabotage attempts 
(near-misses). However, in 1996 police and the British Secu-
rity Service (MI5) arrested members of a militant subgroup of 
the Irish Republican Army (IRA). The objective of their 
planned attack was a number of transformer stations, critical 
for the power distribution in London and south England. The 
investigations that followed showed that only a small amount 
of highly effective explosives would have been required (less 
than three kilo per station), and that the result could have been 
a power outage with duration of several weeks [3].  

Since there is an interaction between the attacker and the 
defender of a system, studies of antagonistic attacks embrace a 
game situation rather than a decision situation. The measures 
applied to defend a power grid will affect an antagonist’s 
course of action, which again will affect the defense, etc. In 
defense analysis, game theory is widely used to analyze effects 
of selecting alternative strategies to achieve a military objec-
tive. Further, penetration testing (“red teaming”) is conducted 
to seek out technical and structural vulnerabilities in computer 
systems, but also for studying attack approaches and conse-
quences of attacks. 

In this paper, we introduce a model for studying strategies 
for defending electric power systems subject to different types 
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of antagonistic threats. The interaction between the defender of 
the system and the antagonists is envisaged as a game. There 
has been some previous work done on related topics. For ex-
ample, a similar systems defense game is formulated in [4]. 
Optimal protection strategies for simple attack scenarios and 
systems, with components either in series or in parallel, are 
derived in [5]. None of these models, however, considers the 
time dimension, and the defender cannot reduce the potential 
damage by reducing the time for recovery. In [6], a game is set 
up between a router, who seeks to minimize the travel cost for 
data packets, or vehicles, by choosing routes in a network, and 
an antagonist, who seeks to maximize the travel cost by de-
stroying edges. A similar technique, using an electric power 
flow model, is used to identify critical components of a power 
grid in [7], is optimally solved in [8], and generalized in [9]. 
Finally, in [10], an overarching model for setting priorities 
among threats and countermeasures, based on probabilistic 
risk analysis, decision analysis and elements of game theory, is 
presented. 

The rest of the paper is organized as follows. First, we in-
troduce a simple electric power systems model. In Sections III 
and IV, we model the defense of the power grid, and the an-
tagonist. Then, in Section V we describe the structure of the 
game, and formulate the optimization problem. After that, we 
provide a practical example, using an idealized version of the 
Swedish national transmission grid. Finally, we discuss the 
model, in particular its implications for decision-making, and 
provide some conclusions regarding possible applications and 
extensions. 

II.  THE ELECTRIC POWER SYSTEMS MODEL 

The structure of an electric power system is described as an 
undirected and connected graph G = (V, E), i.e. a vertex set 
V(G), an edge set E(G), and a relation that associates with each 
edge two vertices. The vertices in the graph represent power 
generation, stations (switching, transformation etc.), and users. 
Edges correspond to power lines. For simplicity, we will con-
sider a lossless electric power grid with N elements (vertices 
and edges). A formulation of the maximum-flow optimization 
problem is given in the Appendix. 

Since the methodology presented here is modular, the elec-
tric power systems model can be replaced with a more realistic 
one; compare with [7]–[9]. Also, professional, or educational, 
software packages for power systems analysis and design can 
be employed to calculate the consequences of attacks. 

The network is maintained by a power systems operator 
(defender), and is subject to attacks by antagonists. An attack 
results in disabled elements in the network, which in turn may 
lead to loss of power for users. Let xi ≥ 0 be the power loss 
(MW) resulting from disabling element i. Depending on the 
structure of the network, the resulting power loss caused by 
disabling multiple elements is, in general, not additive, but 
always at least as great as for any subset of those elements. 
That is, if we let xS denote the power loss caused by disabling 
element set S, then 'SS xx ≥  for every subset SS ⊂' . Let ti be 
the recovery time (h), i.e., the time until element i is fully re-

stored. As shown below, ti can be controlled by the defender. 
The total consequence yi is measured as the energy loss 
(MWh), which is approximated as the power loss times the 
recovery time, i.e., yi = xi · ti. 

III.  DEFENDING THE ELECTRIC POWER SYSTEM 

A.  Measures for Defending Electric Power Systems  

The management of power outages consists of a number of 
phases, for example prevention, mitigation, response, recov-
ery, and learning. Measures for prevention aim at reducing the 
likelihood of an attack or avoiding an attack. Mitigation aims 
at minimizing the negative consequences of an attack. Re-
sponse includes the measures performed during the acute crisis 
phase in order to minimize the negative consequences of the 
attack. Finally, recovery involves all measures carried out to 
bring back the system to a normal state after an attack.  

Some general defensive tactics for prevention and mitiga-
tion are: barriers and fortification; redundancy (to introduce 
additional, equivalent, components); diversity (applied to 
equipment, functions, and staff); training, quality control, and 
procedures review; preventive maintenance; monitoring, sur-
veillance, testing and inspection [11]. The response to a power 
outage (emergency control) can to a large extent be based on 
the same principles as normal electric power system opera-
tions. Recovery (power systems restoration) includes deter-
mining the state of the system, preparing the equipment for 
restoration to service, reintegrating and rebuilding the system, 
and balancing generation and load as they are brought back to 
a normal level [12], [13]. 

B.  A Mathematical Model of the Defense 

We will assume that the defender can only spend resources 
on increasing component protection (e.g. fortification), and/or 
decreasing the recovery time after an attack (e.g. repair teams). 
We do not consider the possibility of adding components to 
the network. Let ctotal be the total amount of resources avail-
able to the defender, thus 

 ctotal = cprevent + crecovery , (1) 

where cprevent is the budget for protecting components, and 
crecovery is the budget for restoration in order to decrease the 
recovery time. 

1) Protection: Every element i has a protection described 
by the parameter pi. This parameter corresponds to the prob-
ability that an attack against element i fails. Consequently, we 
assume that the probability that the attack succeeds only de-
pends on the defense of the attacked element pi and not on the 
attacker (i.e. the attacker has enough resources and compe-
tence for performing a successful attack, see section IV). The 
probability that an attack against element i is successful is, 
therefore, equal to (1 - pi). We assume that a successful attack 
disables the element completely, and that all elements are dis-
abled independently of each other.  

The protection pi of element i is a function of the resources 
ci spent on protecting that element. The defender distributes 
the resources for protection between the N elements in the 
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network. Thus, the protection is described by the vector 
p = (p1, p2,…, pN): 

 Nicpp iii ,...,1),( ==  (2) 

 Nipi ,...,1,10 =≤≤  (3) 
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For the sake of the analysis, we assume that the defense 
functions pi(ci) are continuous increasing functions, and that 
the marginal utility of spending resources on protection is di-
minishing. That is, the marginal cost of the defense pi is an 
increasing function.  

2) Recovery: The repair time of element i depends on the 
resources spent on recovery, as well as the type of the disabled 
element, and the attack method. We assume that the defender 
has a basic recovery capacity for maintenance and for repair-
ing minor failures. We therefore let the constant base

it  corre-
spond to the time it takes to repair an element when no extra 
resources is spent on the recovery. Thus, if the defender 
chooses to spend extra resources on recovery, the recovery 
time ti decreases, i.e. 

 )( recovery
base cftt iii ⋅= , (5) 

where fi(⋅) is a continuous decreasing function. The marginal 
cost of decreasing the recovery time is assumed to be an in-
creasing function. If several elements are disabled, the de-
fender can use different repair schemes depending on the 
available resources for, e.g., parallel repairs. These possibili-
ties will not be modeled explicitly here, but we will assume 
that elements are repaired one at a time in the order that mini-
mizes the total negative consequence. Different schemes may 
produce somewhat different results, but will not affect the 
analysis method itself, since the total consequence will be a 
convex decreasing function of crecovery independently of 
whether elements are repaired simultaneously or one at a time. 

The total allocation of defense resources can thus be de-
scribed by the vector c = (c1,…, cN, crecovery). 

IV.  THE ANTAGONIST 

A.  The Nature of the Antagonist 

Antagonistic attacks form a broad category of threats that 
spans from insiders and saboteurs, to crime syndicates and 
transnational terrorist organizations. Even warfare can be in-
cluded in this category. Attacks are different from random 
failures in the sense that the antagonist chooses what parts of 
the network that are attacked, and also the time of the attack. 
Antagonists can be classified according to a number of criteria 
(not necessary mutually exclusive), e.g. goals and motivation, 
tactics and modes of operation, resources, group size, knowl-
edge and competence, origin, ideology, ethical constraints etc. 
The antagonist’s degree of rationality and determination are 
other important factors (compare with [6]). 

The purpose of an antagonistic attack can be to cause se-

vere damage to a power grid in an attempt to disable important 
functions of a society. However, the goal with an attack might 
not always be to maximize the negative consequences. Instead, 
the objective of the attack can be to make a symbolic demon-
stration, or to cause a large enough consequence, in order to 
achieve a psychological effect such as a spread of fear and 
anxiety. Also, a threat does not always need to be realized, and 
sometimes it can be enough just to make a threat, without any 
real intention of realizing it. The attack can, rather than being a 
goal in itself, be seen as a mean to reach a higher goal (politi-
cal, religious, economical etc.). What this higher goal is, and 
how the attack is supposed to help in achieving the goal is, 
nevertheless, not always obvious. 

B.  The Attack Model 

We will only consider qualified antagonists. That is, deter-
mined, well-informed, and competent antagonists with access 
to enough resources to perform a successful attack against an 
electric power system. It is possible to construct an advanced 
mathematical model of the antagonist. In theory, it might be 
achievable to model the antagonist’s behavior as a utility 
function that also captures the ethical restrictions, resources, 
knowledge, etc. In practice, however, we lack much of the 
necessary information about the antagonists. 

In this paper we will, thus, use a more realistic approach in 
which antagonistic attacks against a system are captured by a 
broad set of attack scenarios that describes the attack strategy, 
tactics, and modes of operation. 

1) Attack Strategy: The attacker’s problem consists of 
choosing one of the available attack targets, by which we mean 
every combination of elements considered possible to attack. 
Each choice of target constitutes a (pure) strategy of the at-
tacker. Let T be the set of targets and M the number of targets. 
If we consider only attacks on single elements, then T is the set 
of all elements and M = N. If we consider simultaneous attacks 
on exactly n > 1 elements, then T is the set of all unique com-
binations of n elements {i1, i2,…, in}, and  

 .
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We do not have to restrict the attacker to use only pure 
strategies. That is, the antagonist is allowed to randomize be-
tween which targets to attack. Let qj correspond to the prob-
ability that target j is attacked, given that an attack is made. 
The vector q of dimension M then describes the mixed strat-
egy, i.e. 

 )attack|attacked istarget ( jPq j =  (7) 
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The outcome of an attack against target j depends on the 
protection of the elements within the target and can be de-
scribed as a stochastic variable Yj. For an attack on a single 
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element i, 
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where yi is the consequences of disabling element i (Section 
II). For an attack on n > 1 elements, one must account for the 
possibility that only a subset of the target is destroyed. Since 
the consequences of destroying several elements, in general, 
are not additive, every subset of elements must be considered 
individually. Let Tj be the set of elements in target j, let S de-
note a subset of Tj and let yS be the consequences of disabling 
the elements in S. Then 
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Based on the discussion above (Section A), we will con-
sider the following three different classes of attacks: 

i. Worst-Case Attack: The antagonist chooses the tar-
get that maximizes the expected negative conse-
quences µj = E(Yj) of the attack. 

ii. Probability-Based Attack: The antagonist tries to 
maximize the probability that the outcome Yj of an 
attack is over a certain magnitude ymin, i.e. 
P(Yj > ymin). 

iii. Random Attack: The antagonist chooses the attack 
target randomly. Each target is attacked with equal 
probability. 

The attack models of [7]–[9] differ from the present one in 
that they are completely deterministic. That is, an attack 
against an element will disable it for certain, and the attacker 
does not randomize over which target to attack. In [7] and [8] 
the objective of the attackers is to maximize the negative con-
sequences. In [9] various objectives can be analyzed, including 
maximizing the consequences or minimizing the resources 
required to achieve consequences above a certain level.  

In the Swedish dataset [2] mentioned above, there are only 
a few minor disturbances caused by sabotage. In all the cases 
in point, the antagonists have targeted installations that are 
easy to access or do not require any specific knowledge about 
the electric power system. Thus, from an electric power sys-
tems view, these attacks could be seen as a more or less ran-
dom selection of attack target. 

2) Tactics and Modes of Operation: In order to capture the 
antagonist’s course of action in more detail, we will also make 
it possible to specify tactics and modes of operation. 

An attack scenario is constructed by specifying the attack 
strategy class, and a few additional parameters. The aim is to 
make the attack scenario more realistic by adding a few condi-
tions and restrictions. For example, an attack against an over-
head power line requires less resources, and competence, than 
an attack against a station or a generator. Also, this makes it 
possible to assign a different recovery time to an element de-
pending on the attack method etc. In our model, attack tactics 
and modes of operation are captured by three parameters: type 
of attack method, type of attack target, and attack size (n). Ex-

amples will be given in Section VI (Table 2). 

V.  THE INTERACTION BETWEEN DEFENDER AND ANTAGONIST 

For the Worst-Case and Probability-Based Attack classes, 
the interaction between the defender and the antagonist can be 
described as a two-player zero-sum (strictly competitive) 
game, where, simultaneously, the defender chooses an alloca-
tion of defense resources, and the antagonist chooses a target 
to attack. Thus, we assume that the defender’s payoff is the 
negative value of the attacker’s payoff. We will also assume 
that “all cards are open”, i.e., both the defender and the an-
tagonist have complete information about the system, and the 
resources and preferences of the other. The situation where the 
defender and/or the antagonist have no, or limited, information 
about the other’s preferences is briefly discussed under Section 
4 below. 

We now formulate the problems corresponding to each of 
the three attack classes. 

1) Worst-Case Attack: The situation where the attacker tries 
to maximize and the defender tries to minimize the total ex-
pected damage can be translated into the following optimiza-
tion problem, with the restrictions given by (1)–(5) and (7)–
(9):  
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For an attack on a single element i, µi = (1 – pi) · yi. Fol-
lowing (11), we can calculate the result for attack size n > 1. 
For example, with n = 2 and an attack on target j consisting of 
elements i1 and i2,  
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In this type of game there exists a Nash equilibrium where 
neither the attacker nor the defender can increase their payoff 
by choosing another strategy. This follows from that q and c 
are compact, convex subsets of a Euclidian space, and the 
payoff functions of the defender and the antagonist described 
by (12) are quasi-concave and continuous [14]. 

2) Probability-Based Attack: The situation where the at-
tacker tries to maximize, and the defender minimize, the prob-
ability that the consequences are above a certain threshold ymin 
can be formulated similarly to the Worst-Case Attack problem: 
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Let S denote a subset of elements within the target. Then let 
the indicator variable IS be 1 if the consequences of destroying 
the element set S are larger than ymin and 0 otherwise, i.e., 

 




≤
>

=
min

min

 if0

 if1

yy

yy
I

S

S
S  (15) 



 5

By substituting every yS in the Worst-Case Attack with IS, 
we obtain the desired problem formulation. The defender can 
control IS by varying the proportion of resources spent on re-
covery. For this problem, we can, however, not guarantee the 
existence of a Nash equilibrium, since the payoff function is 
not continuous in crecovery, compare with (15).  

3) Random Attack: When the antagonist chooses the attack 
target randomly, there is no interaction between the defense 
and attack strategies. For the defender, the situation thus 
changes from a game to a decision problem. We assume that 
the defender wishes to minimize the total expected conse-
quences of the attack. The attack strategy is fixed to qj = 1/M, 
j = 1,…, M, and the problem becomes 

 .)(
1

min
1

c
c ∑

=

M

j
jM

µ  (16) 

This problem can be seen as a special case of the Worst-
Case Attack problem, and has a well-defined solution. 

4) Limited Information: It is often the case that neither the 
attacker, nor the defender, has full information about each 
other’s choice of strategies or the consequences of different 
attacks. Also, an antagonist might act irrational, or in other 
ways not correspond to the payoff maximizing rational player 
that is assumed in game theory. Some of these situations can 
be described as games with incomplete information where a 
so-called Bayesian Nash equilibrium can be applied [14]. In-
stead of trying to model these situations, the expected conse-
quences of the Worst-Case Attack and the Random Attack 
(ceteris paribus) can be used as a span between which the ex-
pected consequences of an unknown attack strategy will lie. 
Accordingly, by studying how these two boundaries are af-
fected by different defense measures, we can make a rough 
evaluation of defense strategies. 

VI.  APPLICATION TO THE SWEDISH TRANSMISSION GRID 

A.  General Premises 

1) Rationale of the Example: In this section, we will illus-
trate how strategies for defending a network can be evaluated. 
We will use the Swedish national high voltage transmission 
system (400 kV and 220 kV voltage levels) as a practical ex-
ample. The purpose of the example is, however, not to evalu-
ate this particular power system. Svenska Kraftnät (the state 
utility that manages and operates the national electric grid) has 
provided us with basic information about the network, and 
allowed us to disclose some results. We will not use authentic 
data on capacities and lengths of the power lines, generation, 
or power transmission to regional distribution grids. However, 
the numerical assumptions in the example are validated by 
Svenska Kraftnät, and can thus be seen as somewhat reason-
able expert assessments. 

General information regarding the Swedish national electric 
grid, including the approximate location of major generators, 
power lines, and stations, in northern Europe, is also published 
on Svenska Kraftnät’s website [15]. 

2) The Network Model: The vertices represent major gen-
erators (source vertices), and regional power grids (sink verti-
ces) that deliver the electricity to the customers. Edges corre-
spond to overhead power lines (Section II and Appendix). The 
location of the generation, and the energy mix (mainly hydro-
power and nuclear power), is realistic. The demand has been 
spread out over most of the country, where the demand of a 
normal regional power grid is set to one power unit (Figure 1).  

The total load on the system, i.e. the sum of all users’ de-
mand, describes the operational situation. Let u be the maxi-
mal possible supply capacity, that is, when every generator 
produces at maximum, there is full import of power, and the 
power lines are used at recommended maximal capacity. We 
differentiate between three different operational situations: i) 
“Normal conditions” (0.75·u), ii) “Cold winter” (0.95·u), and 
iii) “Extreme winter” (u). 

In the model, a regional power grid is connected to the na-
tional transmission grid via one infeed point, which represents 
the entire regional grid (a sink vertex). In reality, users are of 
course also supplied from regional and local power plants, and 
measures can be taken to reduce the power demand if the grid 
becomes unstable. These two factors can to some extent com-
pensate for a small supply shortage from the national transmis-
sion grid, and increase the ability of a regional grid to stay 
connected during a disturbance. 

 

 
Fig. 1. Supply, demand, and edge capacity in the network. The circles corre-
spond to the consumers’ demand, the squares are the supply of generators, 
and the lines are the edge capacities. The size of the markers corresponds to 
the capacity of generators and consumers’ demand. The thickness of a line is 
related to the edge capacity. 

 
Thus, we allow the supply si to a sink vertex i (regional 

power grid) to be lower than the demand Di. If si is lower than 
α · Di, where 0 ≤ α ≤ 1, the regional grid will be disconnected 
in an attempt to avoid further disturbances. Here, we will as-
sume that α = 0.95. 
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B.  Assumptions About the Defense and the Antagonist 

1) Defense Cost Functions: We lack an empirical protec-
tion function, and will use the following function as an exam-
ple: 

 
i

p
i

i
ii

ck

c
cp

+
=)(  (17) 

By changing the protection cost parameter p
ik , we can to 

some degree account for the different costs of protecting dif-
ferent types of elements. Here, we set p

ik  to 2 for regional 
power grids (sink vertices), 3 for generators and 4 for power 
lines. This is related to the difficulty of protecting overhead 
power lines against attacks. This function is chosen mainly 
because it is one of the simplest functions satisfying the condi-
tions in Section III. There are of course numerous other rea-
sonable functions, such as the exponential form 

iic
ii ecp λ−−= 1)( , where λi is a parameter. Given that the 

function is suitably fitted to data, we believe that the results are 
fairly insensitive to this choice. 

We model the recovery time ti with the following function, 
subject to the characteristics described in Section III: 
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The parameter tik  is set to 30 for generators, 20 for users, 
and 10 for power lines. Further, the basic recovery time base

it  
depends on the type of element, and the antagonist’s tactics 
and modes of operation. The numbers in Table 1 are obtained 
by means of expert assessments. 
 

TABLE 1 
BASIC RECOVERY TIME (h) FOR THREE DIFFERENT ATTACK METHODS 

 
Element Low 

Damage 
Moderate 
Damage 

High 
Damage 

Power line 1 10 24 
Station 2 20 96 
Generator 3 30 192 

 
2) Attack Scenarios and Defense Strategies: We will not 

consider multiple attacks separated in time, which can be a 
way of wearing down the defense. A vertex in our model (i.e. a 
bus) consists of several technical components (transformers, 
busbars, protective and control equipment, etc.). Conse-
quently, to practically disable a vertex would most likely in-
volve targeting several different local facilities. We will as-
sume that the antagonist is capable of coordinating at most an 
attack of size n = 2.  

In Table 2, all possible attack scenarios are summarized. 
The head of each column contains a parameter, and in the rows 
below the conditions that the parameters can assume are 
shown. A scenario is described by selecting one element from 
each column. Every possible combination of elements does not 
have to be realistic. In order to illustrate different aspects of 
the model, we will select 12 of the scenarios (Table 3).  
 

TABLE 2 
ATTACK SCENARIO PARAMETERS AND POSSIBLE VALUES 

 
Operational 
Situation 

Attack 
Strategy 

Attack 
Method 

Attack 
Target 

Attack 
Size 

Normal Random Low damage Power Line 1 
Cold winter Probability- 

Based 
Moderate 
damage 

Station 2 

Extreme 
winter 

Worst-Case High damage Generator  

   Combination  

 
TABLE 3 

SELECTED ATTACK SCENARIOS (FOR ALL SCENARIOS THE ATTACK METHOD IS 

“M ODERATE DAMAGE”, AND THE ATTACK TARGET IS “COMBINATION”) 
 

Attack 
Scenario 

Operational 
Situation 

Attack 
Strategy 

Attack 
Size (n) 

A1 Normal Random 1 
A2 Normal Worst-Case 1 
A3 Normal Probability-Based 1 
A4 Extreme Random 1 
A5 Extreme Worst-Case 1 
A6 Extreme Probability-Based 1 
A7 Normal Random 2 
A8 Normal Worst-Case 2 
A9 Normal Probability-Based 2 
A10 Extreme Random 2 
A11 Extreme Worst-Case 2 
A12 Extreme Probability-Based 2 

 

C.  Simulation Results 

1) Technical Notes: Calculating the maximum flow of the 
network is a linear programming problem. We want to maxi-
mize the flow between the source vertices and the sink vertices 
(Appendix). This problem can be solved with the network 
simplex method. After we have calculated the negative conse-
quences of all considered attack combinations, the Nash equi-
librium can be found using a min-max solver. For simplicity, 
we have used the Optimization Toolbox in MATLAB 6.5 [16]. 

2) Optimal Defense Strategies: It is possible to calculate 
optimal defense strategies for all attack scenarios (A1,…, 
A12). That is, a strategy with an outcome that, given the attack 
scenario, is at least as good as that of any other strategy. A 
common design criterion for transmission grids is the so-called 
“N–1 Criterion”, i.e. the whole system must be capable of op-
erating normally even if one major failure occurs. (To calcu-
late the optimal defense against scenarios involving multiple 
attack targets is also very time consuming for a large network). 
Consequently, we have only calculated the optimal defense for 
scenarios involving attacks of size n = 1. The optimal defense 
strategy against attack scenario A1 is denoted D1, the optimal 
strategy against A2 is denoted D2, and so on. 

Table 4 shows the expected consequences µ of attack sce-
narios (A1,…, A12) for the different defense strategies (D1,…, 
D6), given the budget ctotal = 100. The lowest value for each 
attack scenario is marked in bold. A dominant strategy is a 
defense strategy with lower expected negative consequence 
against every attack scenario than every other defense strategy. 
In Table 4 we can see that no such strategy exists, which is to 
be expected.  
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TABLE 4 

EXPECTED CONSEQUENCES (POWER UNITS) FOR DIFFERENT COMBINATIONS 

OF ATTACK SCENARIO AND DEFENSE STRATEGY 
 

Attack  Defense Strategy 
Scenario D1 D2 D3 D4 D5 D6 
A1 2.0 2.5 5.0 2.5 3.0 3.2 
A2 33 15 166 73 61 65 
A3 0.0 0.0 0.0 0.0 0.0 0.0 
A4 36 50 65 32 37 40 
A5 314 432 641 220 121 189 
A6 192 208 170 172 121 64 
A7 4.8 6.1 11.3 5.6 7.0 7.4 
A8 190 260 340 135 127 136 
A9 190 260 166 135 84 66 
A10 81 112 144 71 83 91 
A11 703 966 1187 435 423 559 
A12 122 65 46 189 189 189 

 
In Fig. 2, we show the expected negative consequence µ as 

a function of the total amount of resources spent on protection 
ctotal. The defense strategies D4 and D5 are evaluated against 
the two attack scenarios A4 and A5. The marginal decrease in 
expected negative consequence is a decreasing function of the 
resources spent on the protection ctotal. The difference between 
defending against a Worst-Case Attack and a Random Attack 
can be illustrated as the span between e.g. (D4;A5), and 
(D4;A4). (Compare with the discussion about limited informa-
tion in Section V.) 
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Fig. 2. Expected negative consequences µ as a function of the total defense 
budget ctotal for different combinations of attack scenario and defense strat-
egy. 

 
3) Balancing Prevention and Recovery: There exists an 

optimal allocation between measures for protection and recov-
ery for the scenarios above. This proportion depends on the 
total amount of resources ctotal and the attack scenario. During 
an extreme situation there are more elements whose failure 
will cause large negative consequences compared to the nor-
mal situation. In this situation it is therefore more effective to 
spend a larger fraction of the resources on recovery than dur-
ing the normal situation.  

For the Worst-Case scenarios, e.g. (D2;A2) and (D5;A5), 
more elements become likely targets when the defense budget 

increases. That is, more and more elements will yield the same 
expected negative consequence if attacked. Therefore, it will 
be increasingly interesting to spend resources on recovery 
(Fig. 3). In the Random Attack on the other hand, e.g. (D1;A1) 
and (D4;A4), every component is a possible target. Because of 
the large number of components that need protection, it will be 
more cost-effective to spend resources on recovery. When the 
budget increases, the marginal gain from the extra resources 
spend on recovery will be lower and lower. As a result, the 
fraction of resources spent on recovery decreases when the 
total amount of resources ctotal increases. 

VII.  CHOOSING DEFENSE STRATEGY 

It is well known that results in game theory depend signifi-
cantly on how the problem is framed, i.e. the structure of the 
game. As shown in the example above, a defense optimized 
against, e.g., the Worst-Case Attack strategy will not necessar-
ily provide an optimal defense against other attack scenarios. 
Here, we will discuss this dilemma further, and also how the 
defender can choose between different strategies. 

In Fig. 4, the optimal defense strategy against a Worst-Case 
Attack is shown. Since the antagonist will strike at the ele-
ments that yield the largest expected consequences µ, the de-
fender can lower µ by placing the protection on these elements. 
The more resources the defender spends on the total protec-
tion, the more elements will be protected, and all of these ele-
ments will cause the same expected negative consequences. 
The optimal defense against this attack strategy is, thus, to 
protect the elements in the order of their criticality, starting 
with the element that causes the largest negative consequences 
if disabled.  
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Fig. 3. Balance between protection and recovery under (D5;A5). The dotted 
lines show the expected negative consequences for three different total 
amount of resources ctotal as a function of the fraction crecovery/ctotal. The solid 
line shows the optimal distribution between protection and recovery for dif-
ferent budgets ctotal, i.e. the minimum of the dotted lines. Extra calculations 
have been made to find the optimal distribution for ctotal between the hori-
zontal lines. 
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Fig. 4. The expected consequences µi of disabled elements in a fictitious net-
work for different defense budgets ctotal. The horizontal axis contains the 
different elements i, sorted in order of possible consequence yi.  

 
The optimal defense strategy against a Worst-Case Attack 

will, however, not give the optimal defense against a Probabil-
ity-Based Attack (Fig. 5). Under the assumption that there ex-
ists elements for which yi > ymin and that the defender cannot 
afford to protect all those elements equally well, the antagonist 
will choose to attack that with the lowest protection of those 
elements. Since the Worst-Case defense strategy above dic-
tates that elements are to be protected according to their de-
gree of criticality, it is likely that the antagonist in this situa-
tion will choose to attack the “first” unprotected element. Con-
sequently, distributing the protection over a larger number of 
elements will give a better protection against a Probability-
Based Attack than concentrating the protection on the most 
critical elements.  
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Fig. 5. Expected consequences µi of disabled elements in a fictitious network. 
The horizontal axis contains the different elements i, sorted in order of possi-
ble consequence yi. Defending the network against Worst-Case Attacks, the 
antagonist using a Probability-Based Attack strategy will attack the first un-
protected element (yi > ymin). 

 
As shown in Table 4, there is in general no dominant de-

fense strategy. An important question, thus, is how to choose a 
defense strategy. We can use a number of statistical methods 

to give a ranking of the different defense strategies. A problem 
with this approach, however, is that the relative likelihood of 
each attack scenario is highly uncertain. Accordingly, we can-
not calculate the total expected consequence of the defense 
strategies (D1,…, D6) above. We will discuss three different 
ways of comparing the different defense strategies against each 
other.  

In the first comparison, we study the order of the defense 
strategies. A simple method is to use the sum of the rankings 
as an indicator of the total ranking, and assign an equal weight 
to every attack scenario in the summation. But it would also be 
possible to put different weights to the different attack scenar-
ios, e.g. based on estimations of their likelihood or the size of 
the expected negative consequence. 

By using ordered statistics we overlook the relative differ-
ence between the different defense strategies within a certain 
attack scenario. In the second comparison, we calculate by 
how many percent the expected consequences of each defense 
strategy differ from the mean expected consequences in that 
attack scenario. By doing this we can measure the relative ef-
fectiveness of the defense strategies. If we take the sum of the 
relative difference, we can create a simple measure of the 
“best” defense strategy. As a third comparison we can also use 
the sum of the expected negative consequences µ for the dif-
ferent defense strategies over the 12 attack scenarios. 

The three comparisons indicate that defense strategies op-
timized for the extreme operational situation is more effective 
than the defense strategies for the normal situation. This sug-
gests that the defender should optimize the defenses for the 
worst situation rather than for the normal. The defense strategy 
D5, equivalent to minimizing the worst-case of a single attack 
during an extreme operational situation, has the lowest sum in 
the first test, the lowest sum of relative difference in the sec-
ond test, and the lowest sum of µ for the attack scenarios 
(A1,…, A12) in the third test. 

VIII.  D ISCUSSION 

In this paper, we have shown how concepts and models 
from game theory can be used when evaluating strategies for 
defending an electric power system against antagonistic at-
tacks. The most important point of this paper, however, is not 
the particular game model itself, but rather the way to think 
about and formulate these issues. The game model has deliber-
ately been kept simple in order to not obscure the general idea, 
and to guarantee the existence of optimal solutions. 

In order to be able to use the model in practical decision-
making, two main issues must be addressed. Firstly, a more 
realistic electric power model must be employed. Since the 
framework is modular, and there are suitable models described 
in the literature, we argue that this should be fairly simple 
(compare with Section II). Secondly, with a better under-
standing of the antagonistic threat it would perhaps be possible 
to assign probabilities to different attack scenarios. These 
probabilities could be based on the amount of resources and 
information that each attack strategy would require. However, 
studying antagonistic attacks, we will, to some degree, always 



 9

face a genuine uncertainty. To make use of an even more 
elaborate model will not compensate for the lack of input data. 
That is, we will have to rely on expert judgments and sensitiv-
ity analysis when developing more detailed attack scenarios 
and estimating their corresponding parameters. The defense 
cost functions will have to be validated and calibrated. This is 
possible is theory since it is the power systems operator that 
makes the decisions about the allocation of the defense re-
sources. It should also be noted that a more detailed modeling 
of the electric power system, including the defense cost func-
tions, and the attack scenarios will most likely be classified, 
and thus cannot be reported in open sources. 

The rationale for using a game theory model as described in 
this paper is threefold. Given the adjustments discussed above, 
the modeling framework can be useful in coarse resource allo-
cation planning. The analysis can, thus, be a first step in a 
screening process for finding areas where more detailed analy-
sis is required. Further, the model can be used to study generic 
mechanisms in order to enhance the overall understanding of 
attacks against electric power systems. It is well known that 
theoretical results in game theory depend significantly on how 
the game situation is modeled (the set of players, the set of 
strategies for each player, the order in which decisions are 
made, etc.). However, to use concepts and general models 
from game theory can be a powerful way of framing the prob-
lem. Finally, it is important to point out that an important con-
tribution of all kinds of risk analysis is the actual work process 
itself. That is, the mathematical attack modeling creates a tan-
gible result that can facilitate the thought process, bring to-
gether different stakeholders in the strategic planning process, 
and raise the awareness of these issues in the organization. 

IX.  FUTURE WORK 

Given what has been said above, there are a number of pos-
sibilities for future technical refinements of the model. For ex-
ample, the objectives of the defender and the attacker need not 
be the complete opposite of each other. Also, the assumption 
that the attacker has complete knowledge of the electric power 
system and the defender’s resources may be weakened. The 
uncertainty regarding the outcome of an attack could be repre-
sented using stochastic variables. A way for the systems op-
erator to reduce the consequences of an attack is to increase 
the redundancy of the network, i.e., to add new components. 
This option could be included in the model, given that costs 
are assigned to all such possible reinforcements. Further, mix-
ing the game theoretical approach with a bit of chance can be a 
way of reducing the degree of rationality of an attacker. 

Finally, it is important to emphasize that beside the antago-
nistic threats, electric power networks are subject to technical 
component failures and weather related disruptions. How to 
minimize the consequences in these cases is overlapping the 
present problem. For example, increasing the redundancy of 
the network would likely decrease the consequences of techni-
cal failures and extreme weather also. Similarly, decreasing the 
recovery time would likely be beneficial in all cases. It is also 
likely that the resources available for defense against all these 

threats are constrained by the same budget. Therefore, all 
sources of possible power disruptions should ideally be ana-
lyzed within a common framework. Then an overall best ap-
proach to reducing the risk of major power outages could be 
found. 
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APPENDIX 

The standard maximum-flow optimization problem must be 
adjusted for the fact that elements may be disabled and, subse-
quently, repaired. The problem is thus time-dependent. We 
consider a lossless electric power grid with m vertices, power 
input in

itφ  and output out
itφ  at vertex i, and power flow ijtφ  (MW) 

from vertex i to j, at time t. Let Φt denote the matrix )( ijtφ , and 
),,( inin

1
in

mttt φφ K=φ . We also introduce the parameters δit, 
which is 1 (or 0) if vertex i is functioning (or disabled) at time 
t, and δijt, which is 1 (or 0) if edge (i, j) is functioning (or 
disabled) at time t. 

The time-dependent maximum-flow problem can be for-
mulated as: 
 

 ∑
=

m

i
it

Φ tt 1

out

, in
max φ
φ

 (A.1) 

 
Subject to: 

 

 ,outin ∑
≠

=−
ij

ijtitit φφφ  mi ,...,1=  (A.2) 

 ∑
=

=−
m

i
itit

1

outin 0)( φφ   (A.3) 

 ,jitijt φφ −=  mji ,...,1, =  (A.4) 

 ,0 out
iitit Dδφ ≤≤  mi ,...,1=  (A.5) 

 ,0 in
iitit Sδφ ≤≤  mi ,...,1=  (A.6) 

 ,ijijtijt Lδφ ≤  mji ,...,1, =  (A.7) 

 
Equations (A.2) correspond to Kirchoff’s first rule, (A.3) 

stand for the conservation of energy, and (A.4) is the skew 
symmetry. Inequalities (A.5) are demand constraints, (A.6) are 
supply constraints, and (A.7) are the capacity constraints in the 
edges. Di, Si, and Lij are nonnegative constants. Note that out

itφ  
corresponds to si in Section VI. 
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